Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(41): e2304070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37463430

RESUMO

A new manufacturing paradigm is showcased to exclude conventional mold-dependent manufacturing of pressure sensors, which typically requires a series of complex and expensive patterning processes. This mold-free manufacturing leverages high-resolution 3D-printed multiscale microstructures as the substrate and a gas-phase conformal polymer coating technique to complete the mold-free sensing platform. The array of dome and spike structures with a controlled spike density of a 3D-printed substrate ensures a large contact surface with pressures applied and extended linearity in a wider pressure range. For uniform coating of sensing elements on the microstructured surface, oxidative chemical vapor deposition is employed to deposit a highly conformal and conductive sensing element, poly(3,4-ethylenedioxythiophene) at low temperatures (<60 °C). The fabricated pressure sensor reacts sensitively to various ranges of pressures (up to 185 kPa-1 ) depending on the density of the multiscale features and shows an ultrafast response time (≈36 µs). The mechanism investigations through the finite element analysis identify the effect of the multiscale structure on the figure-of-merit sensing performance. These unique findings are expected to be of significant relevance to technology that requires higher sensing capability, scalability, and facile adjustment of a sensor geometry in a cost-effective manufacturing manner.

2.
Nanoscale ; 15(9): 4195-4218, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757735

RESUMO

The driving mileage of electric vehicles (EVs) has been substantially improved in recent years with the adoption of Ni-based layered oxide materials as the battery cathode. The average charging period of EVs is still time-consuming, compared with the short refueling time of an internal combustion engine vehicle. With the guidance from the United States Department of Energy, the charging time of refilling 60% of the battery capacity should be less than 6 min for EVs, indicating that the corresponding charging rate for the cathode materials is to be greater than 6C. However, the sluggish kinetic conditions and insufficient thermal stability of the Ni-based layered oxide materials hinder further application in fast-charging operations. Most of the recent review articles regarding Ni-based layered oxide materials as cathodes for lithium-ion batteries (LIBs) only touch degradation mechanisms under slow charging conditions. Of note, the fading mechanisms of the cathode materials for fast-charging, of which the importance abruptly increases due to the development of electric vehicles, may be significantly different from those of slow charging conditions. There are a few review articles regarding fast-charging; however, their perspectives are limited mostly to battery thermal management simulations, lacking experimental validations such as microscale structure degradations of Ni-based layered oxide cathode materials. In this review, a general and fundamental definition of fast-charging is discussed at first, and then we summarize the rate capability required in EVs and the electrochemical and kinetic properties of Ni-based layered oxide cathode materials. Next, the degradation mechanisms of LIBs leveraging Ni-based cathodes under fast-charging operation are systematically discussed from the electrode scale to the particle scale and finally the atom scale (lattice oxygen-level investigation). Then, various strategies to achieve higher rate capability, such as optimizing the synthesis process of cathode particles, fabricating single-crystalline particles, employing electrolyte additives, doping foreign ions, coating protective layers, and engineering the cathode architecture, are detailed. All these strategies need to be considered to enhance the electrochemical performance of Ni-based oxide cathode materials under fast-charging conditions.

3.
ACS Appl Mater Interfaces ; 14(48): 53999-54011, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444765

RESUMO

It has been challenging to synthesize p-type SnOx (1 < x < 2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band. Herein, we report on the multifunctional encapsulation of p-SnOx to limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOx channel for thin-film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements identified that ultrathin SiO2 as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOx and selectively diffused hydrogen across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current (on/off ratio > 103), field effect mobility of 3.41 cm2/(V s), and threshold voltages of ∼5-10 V. The fabricated devices show minimal deviations as small as ±6% in the TFT performance parameters, which demonstrates good reproducibility of the fabrication process. The relevance between the TFT performance and the effects of hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. Density functional theory calculations reveal that hydrogen-related impurity complexes are in charge of the enhanced channel conductance with gate biases, which further supports the selective permeation of hydrogen through a thin SiO2 encapsulation.

4.
ACS Appl Mater Interfaces ; 13(46): 55676-55686, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34779629

RESUMO

The fabrication of oxide-based p-n heterojunctions that exhibit high rectification performance has been difficult to realize using standard manufacturing techniques that feature mild vacuum requirements, low thermal budget processing, and scalability. Critical bottlenecks in the fabrication of these heterojunctions include the narrow processing window of p-type oxides and the charge-blocking performance across the metallurgical junction required for achieving low reverse current and hence high rectification behavior. The overarching goal of the present study is to demonstrate a simple processing route to fabricate oxide-based p-n heterojunctions that demonstrate high on/off rectification behavior, a low saturation current, and a small turn-on voltage. For this study, room-temperature sputter-deposited p-SnOx and n-InGaZnO (IGZO) films were chosen. SnOx is a promising p-type oxide material due to its monocationic system that limits complexities related to processing and properties, compared to other multicationic oxide materials. For the n-type oxide, IGZO is selected due to the knowledge that postprocessing annealing critically reduces the defect and trap densities in IGZO to ensure minimal interfacial recombination and high charge-blocking performance in the heterojunctions. The resulting oxide p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V, a low saturation current of ∼2 × 10-10 A, and a small turn-on voltage of ∼0.5 V. In addition, the demonstrated oxide p-n heterojunctions exhibit excellent stability over time in air due to the p-SnOx with completed reaction annealing in air and the reduced trap density in n-IGZO.

5.
Sci Adv ; 7(42): eabj8958, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652946

RESUMO

Polymeric sensors on fabrics have vast potential toward the development of versatile applications, particularly when the ready-made wearable or fabric can be directly coated. However, traditional coating approaches, such as solution-based methods, have limitations in achieving uniform and thin films because of the poor surface wettability of fabrics. Herein, to realize a uniform poly(3,4-ethylenedioxythiophene) (PEDOT) layer on various everyday fabrics, we use oxidative chemical vapor deposition (oCVD). The oCVD technique is a unique method capable of forming patterned polymer films with controllable thicknesses while maintaining the inherent advantages of fabrics, such as exceptional mechanical stability and breathability. Utilizing the superior characteristics of oCVD PEDOT, we succeed in fabricating blood pressure­ and respiratory rate­monitoring sensors by directly depositing and patterning PEDOT on commercially available disposable gloves and masks, respectively. Those results are expected to pave efficient and facile ways for skin-compatible and affordable sensors for personal health care monitoring.

6.
Evid Based Complement Alternat Med ; 6 Suppl 1: 93-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19745017

RESUMO

The usefulness of constitutional diagnoses based on skin measurements has been established in oriental medicine. However, it is very difficult to standardize traditional diagnosis methods. According to Sasang constitutional medicine, humans can be distinguished based on properties of the skin, including its texture, roughness, hardness and elasticity. The elasticity of the skin was previously used to distinguish between people with Tae-eumin (TE) and Soeumin (SE) constitutions. The present study designed a system that uses a compression method to measure the elasticity of hand skin and evaluated its measurement repeatability. The proposed system was used to compare the skin elasticity between SE and TE subjects, which produced a measurement repeatability error of <3%. The proposed system is suitable for use as a quantitative constitution diagnosis method for distinguishing between TE and SE subjects with an acceptable level of uncertainty.

7.
Artigo em Inglês | MEDLINE | ID: mdl-19162967

RESUMO

The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.


Assuntos
Equipamentos e Provisões , Fricção , Mãos/fisiologia , Fenômenos Fisiológicos da Pele , Fenômenos Biomecânicos , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-19163409

RESUMO

Blood pressure is defined as the amount of force at unit area which the blood exerts on a wall of a blood vessel. The BP has a clinical importance as the basic index in the medical examination of patients. Especially, the percentage of the hypertensive is more than 15% in an adult population of Korea and hypertension is notorious as 'a silent killer' because it has no prior symptoms. The most important thing in the diagnosis, treatment and prognosis of hypertension is the accurate measurement of the BP. In this study, we developed the blood pressure simulator for the monitoring of oscillometric BP devices and compared this KRISS simulator with commercial simulators. Finally, we tested the commercial oscillometric BP devices (6 models from 5 manufacturers) using the KRISS simulator. The KRISS simulator has the repeatability error below 0.1% for the pressure generation and we expected to develop the BP simulator for Korean by the collection of clinical data from Koreans.


Assuntos
Determinação da Pressão Arterial/métodos , Monitorização Ambulatorial da Pressão Arterial/instrumentação , Algoritmos , Pressão Sanguínea , Determinação da Pressão Arterial/instrumentação , Calibragem , Simulação por Computador , Desenho de Equipamento , Humanos , Hipertensão/diagnóstico , Oscilometria , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...